NORMAL COORDINATE TREATMENT OF LANTHANIDE HEXAHALIDE ANIONS $(L_n X_5^{3-})^{\dagger}$

M. CHOCA^{††}, J.R. FERRARO* and K. NAKAMOTO

Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439 and the Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233 (U.S.A.)
(Received August 22nd, 1973)

CONTENTS

A. Introduction	295
B. Calculations	296
C. Normal coordinate treatment of LnX ₆ ³	296
D. Force constants	301
E. Potential energy distribution	304
F. Cartesian coordinate displacements and plotting of normal modes	300
References	306

A. INTRODUCTION

Hexahalide complexes of the lanthanide metals have been prepared $^{1-4}$ in the form (RH)₃ LnX₆, where RH represents the pyridinium, triphenyl-phosphonium or tetrabutyl-ammonium cation. The lanthanide hexahalide anion, $\text{Ln}\dot{X}_6^{3-}$, is six-coordinate and believed to occupy a local site of near-octahedral symmetry in the crystalline state $^{1-4}$. These six-coordinate complexes are particularly interesting since lanthanide metals tend to go to higher coordination numbers (e.g. 8, 9, 10 or 12) in other complexes. In a previous paper the far-infrared and Raman skeletal vibrations of the $\text{Ln}X_6^{3-}$ anion have been determined 4 . These vibrational data for the (pyH)₃ LnX₆ complexes have been used to perform normal coordinate treatments by assuming five different potential fields. The force constants determined indicate several behavioral trends occurring within the series. Ferraro and coworkers recently presented a complete survey of metal hexahalide systems as studied using these five force fields⁵, indicating that no theoretical work or force constants were previously available for any lanthanide hexahalide units with the exception of CeCl_6^{2-} .

^{*} Person to whom correspondence should be addressed.

[†] Based on work performed under the auspices of the U.S. Atomic Energy Commission.

^{††} Resident Associate under an ANL-AUA Fellowship from Marquette University, Milwaukee, Wisconsin 53233. In partial fulfilment of the requirements for degree of Doctor of Philosophy.

TABLE 1	
Symmetrized G matrix elements for the octahedral LnX_6^{3-}	unit

Symmetry species	G matrix element a
4 _{1g}	$G_{11} = \mu_{\chi}$
E	$G_{22} = \mu_X$
E g F _{1u}	$G_{33} = \mu_X (1 + 2\mu_{\rm Ln}/\mu_X)$
	$G_{34} = -4\mu_{\mathrm{Ln}}$
	$G_{44} = 2\mu_{X}(1 + 4\mu_{Ln}/\mu_{X})$
F _{2g}	$G_{55} = 4\mu_{X}$
	$G_{66} = 2\mu_{x}$

 $a\mu_n$ = reciprocal mass of n.

B. CALCULATIONS

Computer calculations in this study were performed by an IBM 360-195 or a Sigma V computer. Computer drawings were carried out using a Cal Comp 780 incremental plotter.

C. NORMAL COORDINATE TREATMENT OF LnX₆³-

Normal coordinate treatment of the LnX_6^3 -anion (where Ln = Nd, Eu, Gd, Dy, Er, Yb and X = Cl, Br) was performed by assuming local octahedral symmetry. All the force fields used here⁵⁻¹² have been described in the literature. They are the General Valence Force Field (GVFF), Urey-Bradley Force Field (UBFF), Modified Urey-Bradley Force Field (MUBFF), Orbital Valence Force Field (OVFF) and Modified Orbital Valence Force Field (MOVFF). The elements of the F and G matrices are listed in Tables 1 and 2.

The GVFF contains five force constants. These are f_r , f_{α} , f_{rr} , $f_{\alpha\alpha}$ and $f_{r\alpha}$, where f_r and f_{α} are the stretching and bending terms respectively. The remainder are interaction force constants where f_{rr} is the interaction term for two adjacent bonds, $f_{\alpha\alpha}$ for two angles sharing a common bond and in the same plane, and $f_{r\alpha}$ for an angle and a bond included in the angle. The UBFF contains four force constants, where K and H are the stretching and bending force constants and F and F' are repulsion constants between non-bonded atoms. The MUBFF has five independently variable force constants. Three of these are the standard UBFF constants K, H and F. F' is allowed to equal $-\frac{1}{10}F$ as calculated when it is assumed that the forces between non-bonded atoms are proportional to $1/r^9$, where r is the distance between non-bonded atoms. Two additional GVFF-type interaction constants are added. These are the constants h and h, where h is the interaction constant between two angles sharing a common bond and at right angles to each other, and h is the interaction constant for two bonds trans to each other. The OVFF has four force constants -K, h, h, h and h. These are analogous to UBFF constants except that h is the

UBFF ¹⁶	MUBFF ^{16,24}	0VFF ²⁵	MOVFF ⁵	GVFF
$F_{11} = K + 4F$	$F_{11} = K + 4F + K$	$F_{11} = K + 4F$	$F_{11} = K + 4F + k$	$F_{11} = f_p + 5.33 f_{pp}$
$F_{22} = K + F + 3F'$	$F_{22} = K + 0.7F + K$	$F_{22} = K + F + 3F'$	$F_{22} = K + F + 3F' + k$	$F_{22} = f_r - 0.667 f_{rr}$
$F_{33} = K + 2F + 2F'$	$F_{33} = K + 1.8F - K$	$F_{33} = K + 2F + 2F'$	$F_{33} = K + 2F + 2F' - k$	$F_{33} = f_p - 1.33 f_{pp}$
$F_{34} = F + F'$	$F_{34} = 0.9F$	$F_{34} = F + F'$	$F_{34} = F + F'$	$F_{34} = 2f_{r\alpha}$
$F_{44} = H + F/2 - 3/2 F'$	$F_{44} = H + 0.65 F + 2 h$	$F_{44} = D/2 + F/2 - 3/2F'$	$F_{44} = D/2 + F/2 - 3/2F'$	$F_{44} = f_{\alpha} + 2f_{\alpha\alpha}$
$F_{SS} = H + 1/2F - 1/2F'$	$F_{55} = H + 0.55F$	$F_{55} = D/4 + F/2 - F'/2$	$F_{SS} = D/4 + F/2 - F'/2$	$F_{55} = f_{\alpha} - 2f_{\alpha\alpha}$
$F_{66} = H + 1/2F + 1/2F'$	$F_{66} = H + 0.45F - 2h$	$F_{66} = D/2 + F/2 + F'/2$	$F_{66} = D/2 + F/2 + F'/2$	$F_{66} = f_{\alpha} - 2f_{\alpha\alpha}$

Observed and calculated frequencies and force constants for several lanthanide hexahalide, LnX_6^3 , complexes a

TABLE 3

***************************************	***************************************		***************************************		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				,					
		Frequenc	Frequencies (cm ⁻¹)					Force	constar	Force constants (mdyne/A)	yne/A)		Average percentage deviation	contage
Hexahalide b Ln X_6^3		181 (A18)	$\nu_2(E_g)$	$v_3(F_{144})$	$v_4(F_{1u})$	$v_5(F_{2g})$	$v_6(F_{2u})$	K	F.	H(D) f _α	$h(F')$ $f_{\alpha\alpha}$	7. K	(\(\nu_1,\nu_2,\nu_3\)	(24,26,26)
NdCl3-	Observed	252	204	226	121	113	(80)			1				
	UBFF	241	193	242	116		11	69.0	0.13		-0.01		5.6	4.9
	MUBFF	246	202	226	116		11	0.71	0.11		0.001	0.11	1.4	4.5
	OVFF	236	194	242	119		78	0.71	0.11		-0.01		6.2	1.7
	MOVFF	245	208	226	120		80	0.72	0.10	0.04	-0.01	0.11	1.6	8.0
	GVFF	252	204	226	121		80	0.91	0.08		0.01	90.0	0.0	0.0
NdBr3-	Observed		(123)	167	94	9/	(54)							
1	UBFF		119	172	68	81	52	0.57	0.13	0.01	-0.01		2.3	5.3
	MUBFF	153	123	167	88	81	52	0.58	0.12	0.01	0.001	0.05	0.3	5.2
	OVFF	150	119	174	90	13	54	0.59	0.12	0.03	-0.01		3.5	2.5
	MOVFF	151	125	167	93	11	54	0.60	0.10	90.0	-0.02	80'0	1.2	****
	GVFF	154	123	167	94	9/	54	92.0	0.01	90.0	0.01	0.04	0.0	0.1
Euci3-	Observed		(216)	226	144	111	(80)							
•	UBFF	243	196	246	125	124	75	0.74	0.12	0.01	-0.02		7.7	10.4
	MUBFF		220	226	126	124	75	0.78	60.0	0.03	0.01	0.16	1.3	10.2
	OVFF		197	249	133	118	80	0.79	0.09	0.07	-0.02		9.3	4.6
	MOVFF		221	228	136	115	80	0.85	90.0	0.10	-0,02	0.19	2.0	3.4
	GVFF c		216	235	128	112	79	1.02	0.07	0.11	0.02	0.12	1.4	4.3
EuBr3-	Observed	156	(126)	164	97	81	(57)							
	UBFF	156	119	171	92	98	56	0.57	0.14	0.01	0.01		3.1	4.5
	MUBFF	156	126	164	93	98	55	0.59	0.12	0.02	0.001	0.0	0.1	4.3
	OVFF	154	119	172	94	83	57	0.58	0.13	0.03	-0.01		3.9	2.1
	MOVFF	155	126	164	16	8 1	57	0.60	0.11	90.0	-0.02	0.09	0.3	0.3
	GVFF	156	126	164	16	81	57	0.79	0.07	0.09	0.01	0.05	0.0	0.1

TABLE 3 (continued)

		Frequenc	Frequencies (cm ⁻¹)					Force	Force constants (mdyne/A)	ıts (md	yne/A)		Average percentage deviation	entage
Hexahalide b ${ m LnX}_6^3$		"1(A1g)	$\nu_2(E_g)$	v ₃ (F _{1u})	$v_3(F_{1u})$ $v_4(F_{1u})$ $v_5(F_{2g})$	"5 (F2g)	$v_6(F_{2u})$	* 4	F	H(D)	h(F') fαα	k fra	(v1, v2, v3)	(\(\nu_4\), \(\nu_5\), \(\nu_6\)
GdC18-	Observed UBFF MUBFF OVFF	258 245 249 239 247	(202) 193 206 194 207	227 242 228 243 227	135 126 127 131 134	120 130 130 125 123	83 81 85 84 85	0.70 0.71 0.73 0.74	0.12	0.02	-0.02 0.003 -0.02 -0.02	0.09	5.4 1.9 6.0 0.0	6.3 2.3 1.4
GdBr ₆	Observed UBFF MUBFF OVFF MOVFF	157 156 156 156 156 157	(122) 120 120 120 120	163 163 166 166 163	G 88 88 80 66 66 66 66 66 66 66 66 66 66 66 66 66	88 88 87 85 85 85		0.54 0.54 0.54 0.54			-0.01 -0.005 -0.01 -0.01	0.03	1.6 0.3 0.0 0.0	22.2 0.5 0.0 0.4
DyCl ₆	Observed UBFF MUBFF OVFF MOVFF		(198) 193 203 194 204 198	230 242 243 230 230	139 128 128 134 137	118 129 129 123 122	(81) 77 77 81 80 82	0.71 0.70 0.75 0.75 0.88	0.14 0.13 0.09 0.09	0.006 0.02 0.05 0.07 0.10	-0.02 0.006 -0.02 -0.03 0.01	0.07	4.0 5.1 2.8 0.0	7.0 7.2 3.7 1.9
Dy Br 6	Observed UBFF MUBFF OVFF MOVFF GVFF		(124) 120 124 123 123	161 166 161 165 161	4 6 6 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	92 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	64 63 63 64 64 64 64 64 64 64 64 64 64 64 64 64	0.54 0.57 0.53 0.53	0.16 0.14 0.17 0.16 0.08	0.02 0.02 0.03 0.04 0.10	-0.01 -0.005 -0.006 -0.01 0.002	0.06	2.2 2.2 0.6 0.0	1.5 0.4 0.5 2.1

TABLE 3 (continued)

	î.	roquenci	Frequencies (cm ⁻¹)					Force	Force constants (mdyne/A)	nts (md	yne/A)		Average percentage deviation	entage
Hexahalide b LnX ₆	ā	, v ₁ (A _{1g})	v2(Eg)	$v_3(F_{1u})$	$v_4(F_{1u})$	vs (F2g)	$v_6(F_{2u})$	N. Cr	F	H(D)	h(F') Saa	r ra	(6,1,2,1,13)	(b4,b5,b6)
ErCl ³ -	Observed 20 UBFF 24 MUBFF 26 OVFF 27 MOVFF 24 GVFF 28	260 247 248 238 244 260	(200) 193 205 195 207 220	229 242 230 244 229 229	143 130 130 137 140 143	118 130 130 124 123 116	(81) 77 77 81 81 80	0.72 0.74 0.77 0.79 0.90	0.14 0.10 0.09 0.10	0.01 0.03 0.06 0.08	-0.03 0.007 -0.03 0.03	0.08	4.7 2.4 5.9 3.1 0.0	8.4 8.1 3.3 2.3 0.9
EfBr ³ -	Observed 19 UBFF 19 OVFF 19 MOVFF 19 GVFF 19	161 160 161 161 161	(22) 121 121 121 121 121	166 167 166 166 166 166	94 64 83 3 44 84 84 84 84 84 84 84 84 84 84 84 84	90 60 60 60 60 60 60 60 60 60 60 60 60 60	(64) 63 83 84 84 84 84 84	0.55 0.57 0.54 0.54 0.75	0.16 0.16 0.17 0.17 0.09	0.02 0.01 0.03 0.03	-0.007 -0.005 -0.007 -0.007 0.005	0.02 0.004 0.02	0.5 0.3 0.1 0.0	1.9 1.6 0.1 0.2
Y ₅ Cl ₆	Observed 2 UBFF 2 MUBFF 2 OVFF 2 MOVFF 2	263 245 250 234 245 263	(207) 197 213 198 215 207	226 243 227 246 226 226	139 123 123 131 131	111 124 124 118 116	(79) 74 79 78 79	0.75 0.76 0.80 0.84 0.96	0.13 0.01 0.06 0.06	0.01 0.02 0.09 0.09	-0.02 0.006 -0.02 -0.03	0.12 0.16 0.08	6.5 2.7 8.0 3.7 0.0	9.8 9.8 2.8 0.2
YbBí ₆	Observed 1 UBFF 1 MUBFF 1 OVFF 1 MOVFF 1 GVFF 1	160 157 156 151 152 160	(119) 118 121 118 122 119	161 165 161 167 161	96 91 93 96	78 84 84 82 81 78	(55) 53 53 55 55	0.56 0.56 0.58 0.59 0.73	0.15 0.14 0.12 0.11	0.000 0.005 0.03 0.05 0.19	-0.02 0.002 -0.02 -0.02 0.06	0.03 0.06 0.17	1.9 1.2 3.4 0.0	5.9 5.8 2.9 2.0 0.1

d Observed frequencies listed in parentheses were derived from combination bands or calculations. b All observed frequencies are those for the solid pyridinium complex, (pyH) $_3$ LnX $_6$. c Oscillating, best fit given.

contribution to the potential energy of $\Delta\beta$. Here $\Delta\beta$ is the angle deformation of the bond M-X away from its idealized hybrid orbital as opposed to $\Delta\alpha$ (of UBFF), which is the angle deformation of XMX. The MOVFF has five force constants. Four are basic OVFF constants (i.e. K, D, F and F') and the fifth is the GVFF-type interaction, k, as defined for MUBFF. The derivation and more detailed discussion of these force fields can be found elsewhere⁵⁻¹².

Solutions of secular equations were performed using a program of Yeranos and Foss¹³. A least-squares analysis was employed fitting calculated frequencies to observed experimental frequencies to give a "best" set of force constants. Table 3 gives the results of these calculations. Observed and calculated frequencies, as well as converged force constants are given for each force field. The percentage deviation of the calculated from the observed frequencies are given as an average for v_1 , v_2 and v_3 (essentially stretching) and v_4 , v_5 and v_6 (essentially bending). The General Valence Force Field values are given as a reference although an artificial problem where the number of knowns is equivalent to the number of unknowns has been created. This is a result of the calculation fixing $v_6 = v_5/\sqrt{2}$ which is implicit in GVFF assumptions. The result was a "perfect fit" solution for eleven of the twelve complexes for which GVFF calculations were performed. However, no convergence could be achieved for EuCl₆³ , and the refinement problem oscillated between two sets of force constants, neither of which gave a "perfect fit", Although several methods of damping the refinement process were tried for EuCl₆³ , no convergence could be achieved.

In this paper we assume that the force field giving the lowest average percentage deviation (i.e. best fit of calculated to observed frequencies) is the "best" potential energy force field. For all twelve of the LnX_6^{3-} units studied here, the MOVFF gives the "best" overall fit for both stretching and bending vibrations. MUBFF also gives a "good" fit for the stretching frequencies. However, MUBFF is noticeably bad for those vibrations which are essentially bending $(\nu_4, \nu_5 \text{ and } \nu_6)$. This is manifest in the higher average percentage deviation for ν_4 , ν_5 and ν_6 for MUBFF compared with MOVFF. Previous studies comparing these force fields for octahedral complexes indicate that MOVFF gives best fits with observed frequencies for most hexachlorides and hexabromides⁵.

D. FORCE CONSTANTS

It is important to consider the significance of several individual force constants. The metal—halogen stretching force constant $(f_r \text{ or } K)$ takes the largest value and is most variable among the force constants studied here. Further, this stretching force constant readily lends itself to direct comparison with such properties of the LnX_6^{-1} unit as bond strength, bond length, oxidation number and bond order. This metal—halogen stretching force constant is 0.72-0.79 mdyne/Å for the LnCl_6^{3-1} complexes and 0.54-0.59 mdyne/Å for the LnBr_6^{3-1} complexes. The lower value for the bromide complexes was expected as

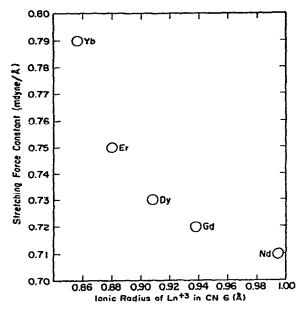


Fig. 1. Variation of the stretching force constant with the ionic radius of the metal for $LnCl_6^{3-}$.

the observed fundamental halide shift can be accounted for only partially by the mass change⁴. In general, the metal—halogen stretching force constant, f_{LnX} , decreases in going from fluorine to iodine⁵. Our results are consistent with these observations. This order may be expected since the lanthanide metals act as Chatt—Ahrland Group A metals², so that stronger bonds are formed with lighter halogens (F > Cl > Br > I).

Some variation of the metal—halogen stretching force constant occurs for different metals within the lanthanide series. As the ionic radius of the metal ion decreases by lanthanide contraction (moving towards higher atomic number) the force constant increases indicating a stronger and shorter metal—halogen bond. Figures 1 and 2 show the variation of the stretching force constant with the ionic radius of the Ln^{3+} metal. The force constant (K) plotted is the average of the refined force constant for UBFF, MUBFF, OVFF and MOVFF. The GVFF stretching force constant (f_r) was not included for the reasons discussed earlier. The ionic radii are those given for Ln^{3+} ions by Douglas and McDaniel¹⁴. Although Ln^{3+} ionic radii, as found in the literature, vary considerably in absolute value the trend observed here is consistent for several different reported radii. The value for $EuCl_6^{3-}$ was not included because it deviated widely and inexplicably from the other values. Figure 1 shows a consistent dependence of the stretching force constant on the ionic radius for the $LnCl_6^{3-}$ complexes. The $LnBr_6^{3-}$ series appears somewhat less consistent (Fig. 2). The bromides seem to be divided into two behavioral groups — one containing Nd and Eu, and one containing the heavier metals such as Gd, Dy, Er and Yb.

All of the force fields considered here, except GVFF, include Urey—Bradley-type repulsions of non-bonded atoms. Steele¹⁵ has pointed out that these interactions occur

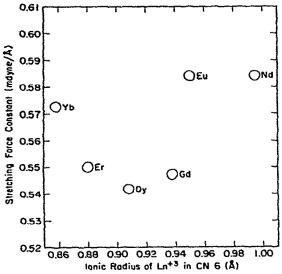


Fig. 2. Variation of the stretching force constant with the ionic radius of the metal for LnBr₆³.

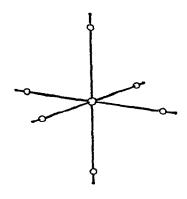
predominantly in systems where steric effects between non-bonded nuclei are significant. We would expect that the lanthanide bromides would demonstrate more steric interactions than the chlorides since bromine is larger than chlorine. In fact, our calculations show larger repulsive force constants, F, for bromides than chlorides. For example, for $GdCl_6^3$, $F_{\text{Cl-Cl}} = 0.118$ mdyne/Å and $F_{\text{Br-Br}} = 0.145$ mdyne/Å. Further, as the ionic radius of the metal decreases (drawing the halogens closer together), the repulsive force constant, F, tends to increase for the bromides. For example, NdBr₆³-, F_{Br-Br} = 0.118 m/dyne/Å and for $ErBr_6^3$, $F_{Br-Br} = 0.165$ mdyne/Å. It is rather interesting to note that an opposite trend is seen for the chlorides. YbBr₆³ does not behave consistently. It is, perhaps, worthy of comment that the bromides show smaller average percentage deviations than the chlorides for all the force fields which include Urey—Bradley-type interactions (UBFF, MUBFF, OVFF, MOVFF). This tends to verify Steele's belief that these force fields are most applicable to systems involving large steric interactions¹⁵. A second explanation for the consistently low percentage deviation for LnBr₆ calculations (as compared with LnCl₃ may be that the bromides more closely approach the assumed octahedral symmetry. On the basis of electronic spectra, Ryan² draws similar conslusions that the LnX₆³ anion approaches octahedral symmetry in the order I > Br > Cl where $LnCl_6^3$ is the most

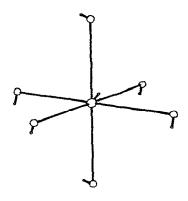
The F' repulsion constant appears in the UBFF, OVFF and MOVFF. In the MUBFF, F' was set equal to $-\frac{1}{10}$ F, assuming van der Waal type interactions between non-bonded atoms and covalently bonded molecules. Although the Ln-X bonds of the lanthanide hexahalide anions are somewhat ionic in character, the validity of the $F' = -\frac{1}{10}F$ approximation for LnX₆³ complexes becomes evident when F' is allowed to vary inde-

pendently of F (that is in UBFF, OVFF and MOVFF); the least-squares refined F' value always converged to very near $-\frac{1}{10}F$ (see Table 3).

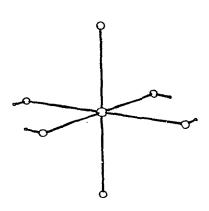
Although the stretching interaction force constant $k(f'_{rr})$ of MUBFF and MOVFF is small, it is obviously highly significant. Both MOVFF and MUBFF give excellent fits for the stretching vibrations. This "good" fit indicates the importance of the interaction between non-adjacent (trans) metal—halogen bond stretchings. That is, the metal—halogen stretching vibration has a significant influence on the bond trans to it. Such an observation has been expressed previously in terms of the "trans effect" 17.

The force constant h of MUBFF is very small for all the molecules studied here. This force constant represents the interaction of adjacent angles sharing a common bond but not in the same plane. The smallness of this force constant and the poor fit for bending fundamentals (large percentage deviation for ν_4 , ν_5 , ν_6) in MUBFF lead us to conclude that $h(f'_{\alpha\alpha})$ is not an important interaction to be included in the potential energy description of the LnX_5^{3-} system.

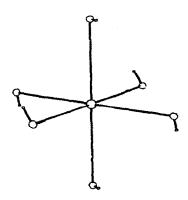

E. POTENTIAL ENERGY DISTRIBUTION


The potential energy distribution coefficient, PED, is defined by

PED =
$$\Lambda^{-1}$$
 (JZ) Φ


where JZ is the Jacobian matrix expressing the variation of the eigen-value with the force constants, Φ is the column force constant matrix, and Λ^{-1} is the reciprocal diagonal matrix of the eigenvalues¹⁹. The PED has been calculated over the force constants for each of the force fields and LnX_6^3 units. The results are not listed for the sake of brevity but are available from the authors on request.

From the PED it is evident that v_1 and v_2 are pure stretching modes since these two vibrations include no contribution from the bending constants. The opposite is true for v_5 and v_6 which can be considered pure bending modes. Although v_4 is primarily a bending vibration and v_3 is largely stretching, a slight amount of coupling between these two modes is seen for some LnX_6^{3-} groups. However, the contribution is usually less then 5% and can be considered nearly insignificant. The importance of the $k(f'_{rr})$ constant, added to the MUBFF and MOVFF, is evident in the PED only for stretching vibrations. The $h(f'_{\alpha\alpha})$ force constant of MUBFF is insignificant for many of the complex ions, although it does indicate some participation in the v_4 and v_6 vibrations of some heavier metal chlorides. The PED of the repulsive force constant, F, is rather interesting. As might be expected, the PED of F tends to be greater for bending modes than for stretching modes. Further, F participation is, in general, larger for the bromides than for the chlorides and increases as the radius of the central metal decreases.



FREQ 3A (F1U)

FREG. 4A (F1U)

FREQ. 6A (F2U)

FREQ. 5A (F20)
Fig. 3. Normal vibrations of NdX_6^3 . Symmetry species labels appear, as computer plotted, without subscripts, i.e. F1U is equivalent to F_{1u} .

F. CARTESIAN COORDINATE DISPLACEMENTS AND PLOTTING OF NORMAL MODES

The solution of the secular equation provides eigenvalues, PED information and force constants. However, it is rather difficult to visualize the actual vibration from these data. We can plot the molecular motion by transforming the normal mode of vibration into Cartesian coordinate space. The transformation matrix from the normal to Cartesian coordinates can easily be obtained using Schachtschneider's programs¹⁸. The calculations have been completed using both GVFF and UBFF with no significant changes in the results. The results were plotted using the crystallographer's ORTEP program¹⁹ as described by LaBonville and Williams²⁰. Figure 3 shows the resulting normal modes of vibrations. These displacements have been multiplied six times in order to make small displacements observable.

The importance of plotting out the actual normal vibrations for any system becomes apparent when the drawings of Fig. 3 are compared with any theoretical representation of normal vibrations for octahedral symmetry. Several standard texts give the theoretically expected vibration for MX_6 octahedral units²¹⁻²³. Although these are probably correct for the general case, some variations always occur in practice. In this study, the ν_1 , ν_2 , ν_3 and ν_5 vibrations agree with the standard descriptions of the normal modes. However, ν_4 and ν_6 vary slightly but significantly.

REFERENCES

- 1 J.L. Ryan and C.K. Jorgensen, Mol. Phys., 7 (1963) 17.
- 2 J.L. Ryan, Inorg. Chem., 8 (1969) 2053.
- 3 J.B. Gruber, E.R. Menzel and J.L. Ryan, J. Chem. Phys., 51 (1969) 3816.
- 4 M. Choca, J.R. Ferraro and K. Nakamoto, J. Chem. Soc., in press.
- 5 P. LaBonville, J.R. Ferraro, M.C. Wall, S.M.C. and L.J. Basile, Coord. Chem. Rev., 7 (1972) 257.
- 6 J. Gaunt, Trans. Faraday Soc., 50 (1954) 546.
- 7 C.W.F.T. Pistorius, J. Chem. Phys., 29, (1958) 1328.
- 8 J.H. Claassen, J. Chem. Phys., 30 (1959) 968.
- 9 K. Venkateswarlu and S. Sundaram, Z. Phys. Chem., 9 (1956) 174.
- 10 J.W. Linnett and C.J.S.M. Simpson, Trans. Faraday Soc., 55 (1959) 857.
- 11 O.N. Singh and D.K. Rai, Can. J. Phys., 43 (1965) 167, 378.
- 12 S. Sundaram, Proc. Phys. Soc., London, 91 (1967) 764.
- 13 W.A. Yeranos and F.D. Foss, Mol. Phys., 9 (1965) 87.
- 14 B.E. Douglas and D.H. McDaniel, Concepts and Models of Inorganic Chemistry, Blaisdell Publishing Co., New York, 1965.
- 15 D. Steele, Theory of Vibrational Spectroscopy, W.B. Saunders Co., Philadelphia, 1971.
- 16 H.C. Urey and C.A. Bradley, Jr., Phys. Rev., 38 (1931) 1969.
- 17 F. Basolo and R.G. Pearson, Mechanisms of Inorganic Reactions, Wiley, New York, 1967.
- 18 J.H. Schachtschneider, Vibrational Analysis of Polyatomic Molecules, Vols. V and VI, Technical Reports, Nos. 231-64 and 53-65, Shell Development Co., Emeryville, Calif., 1964 and 1965.
- 19 C.J. Johnson, ORTEP: A Fortran thermal ellipsoid plot program for crystal structure illustration, ORNL-3794, June 1965.
- 20 P. LaBonville and J.M. Williams, Appl. Spectrosc., 25 (1971) 672.

- 21 J.R. Ferraro and J.S. Ziomek, Introductory Group Theory and its Application to Molecular Structure, Plenum Press, New York, 1969.
- 22 K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, Wiley-Interscience, New York, 1970.
- 23 J.R. Ferraro, Low Frequency Vibrations of Inorganic and Coordination Compounds, Plenum Press, New York, 1971.
- 24 I. Nakagawa and T. Shimanouchi, Spectrochim. Acta, 18 (1962) 89, 101.
- 25 H. Kim, P. A. Souder and H.H. Claassen, J. Mol. Spectrosc., 26 (1968) 46.